水解是指有機物進入微生物細胞前、在胞外進行的生物化學(xué)反應(yīng)。微生物通過釋放胞外自由酶或連接在細胞外壁上的固定酶來完成生物催化反應(yīng)酸化是一類典型的發(fā)酵過程,微生物的代謝產(chǎn)物主要是各種有機酸。
從機理上講,水解和酸化是厭氧消化過程的兩個階段,但不同的工藝水解酸化的處理目的不同。水解酸化-好氧生物處理工藝中的水解目的主要是將原有廢水中的非溶解性有機物轉(zhuǎn)變?yōu)槿芙庑杂袡C物,特別是工業(yè)廢水,主要將其中難生物降解的有機物轉(zhuǎn)變?yōu)橐咨锝到獾挠袡C物,提高廢水的可生化性,以利于后續(xù)的好氧處理。考慮到后續(xù)好氧處理的能耗問題,水解主要用于低濃度難降解廢水的預(yù)處理。混合厭氧消化工藝中的水解酸化的目的是為混合厭氧消化過程的甲烷發(fā)酵提供底物。而兩相厭氧消化工藝中的產(chǎn)酸相是將混合厭氧消化中的產(chǎn)酸相和產(chǎn)甲烷相分開,以創(chuàng)造各自的最佳環(huán)境。
結(jié)構(gòu):酸化水解池內(nèi)分污泥床區(qū)和清水層區(qū),待處理污水以及濾池反沖洗時脫落的剩余微生物膜由反應(yīng)器底部進入池內(nèi),并通過帶反射板的布水器與污泥床快速而均勻地混合。污泥床較厚,類似于過濾層,從而將進水中的顆粒物質(zhì)與膠體物質(zhì)迅速截留和吸附。由于污泥床內(nèi)含有高濃度的兼性微生物,在池內(nèi)缺氧條件下,被截留下來的有機物質(zhì)在大量水解—產(chǎn)酸菌作用下,將不溶性有機物水解為溶解性物質(zhì),將大分子、難于生物降解的物質(zhì)轉(zhuǎn)化為易于生物降解的物質(zhì);同時,生物濾池反沖洗時排出的剩余污泥(剩余微生物膜)菌體外多糖粘質(zhì)層發(fā)生水解,使細胞壁打開,污泥液態(tài)化,重新回到污水處理系統(tǒng)中被好氧菌代謝,達到剩余污泥減容化的目的。由于水解酸化的污泥齡較長(一般15~20天)。若采用水解酸化池代替常規(guī)的初沉池,除達到截留污水中懸浮物的目的外,還具有部分生化處理和污泥減容穩(wěn)定的功能。
處理過程:厭氧生化處理的概述
廢水厭氧生物處理是指在無分子氧的條件下通過厭氧微生物(包括兼氧微生物)的作用,將廢水中各種復(fù)雜有機物分解轉(zhuǎn)化成甲烷和二氧化碳等物質(zhì)的過程。
厭氧生化處理過程:高分子有機物的厭氧降解過程可以被分為四個階段:水解階段、發(fā)酵(或酸化)階段、產(chǎn)乙酸階段和產(chǎn)甲烷階段。
1、水解階段
水解可定義為復(fù)雜的非溶解性的聚合物被轉(zhuǎn)化為簡單的溶解性單體或二聚體的過程。
2、發(fā)酵(或酸化)階段
發(fā)酵可定義為有機物化合物既作為電子受體也是電子供體的生物降解過程,在此過程中溶解性有機物被轉(zhuǎn)化為以揮發(fā)性脂肪酸為主的末端產(chǎn)物,因此這一過程也稱為酸化。
3、產(chǎn)乙酸階段
在產(chǎn)氫產(chǎn)乙酸菌的作用下,上一階段的產(chǎn)物被進一步轉(zhuǎn)化為乙酸、氫氣、碳酸以及新的細胞物質(zhì)。
4、甲烷階段
這一階段,乙酸、氫氣、碳酸、甲酸和甲醇被轉(zhuǎn)化為甲烷、二氧化碳和新的細胞物質(zhì)。
水解酸化分析:高分子有機物因相對分子量巨大,不能透過細胞膜,因此不可能為細菌直接利用。它們在水解階段被細菌胞外酶分解為小分子。例如,纖維素被纖維素酶水解為纖維二糖與葡萄糖,淀粉被淀粉酶分解為麥芽糖和葡萄糖,蛋白質(zhì)被蛋白質(zhì)酶水解為短肽與氨基酸等。這些小分子的水解產(chǎn)物能夠溶解于水并透過細胞膜為細菌所利用。水解過程通常較緩慢,多種因素如溫度、有機物的組成、水解產(chǎn)物的濃度等可能影響水解的速度與水解的程度。
酸化階段,上述小分子的化合物在酸化菌的細胞內(nèi)轉(zhuǎn)化為更為簡單的化合物并分泌到細胞外。發(fā)酵細菌絕大多數(shù)是嚴格厭氧菌,但通常有約1%的兼性厭氧菌存在于厭氧環(huán)境中,這些兼性厭氧菌能夠起到保護嚴格厭氧菌免受氧的損害與抑制。這一階段的主要產(chǎn)物有揮發(fā)性脂肪酸、醇類、乳酸、二氧化碳、氫氣、氨、硫化氫等,產(chǎn)物的組成取決于厭氧降解的條件、底物種類和參與酸化的微生物種群。
總結(jié):水解階段是大分子有機物降解的必經(jīng)過程,大分子有機物想要被微生物所利用,必須先水解為小分子有機物,這樣才能進入細菌細胞內(nèi)進一步降解。酸化階段是有機物降解的提速過程,因為它將水解后的小分子有機物進一步轉(zhuǎn)化為簡單的化合物并分泌到細胞外。這也是為何在實際的工業(yè)廢水處理工程中,水解酸化往往作為預(yù)處理單元的原因。
兩點普遍認同的作用:
1、提高廢水可生化性:能將大分子有機物轉(zhuǎn)化為小分子。
2、去除廢水中的COD:既然是異養(yǎng)型微生物細菌,那么就必須從環(huán)境中汲取養(yǎng)分,所以必定有部分有機物降解合成自身細胞。
設(shè)計計算:水解(酸化)池設(shè)計計算
1、有效池容V可以根據(jù)污水在池內(nèi)的水力停留時間計算的。水解(酸化)池內(nèi)水力停留時間需根據(jù)污水的有機物種類(水解的速度情況)、進水有機物濃度、當?shù)氐钠骄鶜鉁厍闆r綜合而定。
2、池截面面積根據(jù)污水在池內(nèi)的上升流速計算。對于水解酸化反應(yīng)器,為了保持其處理的高效率,必須保持池內(nèi)足夠多的活性污泥,同時要使進入反應(yīng)器的廢水盡量快地與活性污泥混合,增加活性污泥與進水有機物的接觸好。上升流速需要保證污泥不沉積,同時又不能使活性污泥流失,所以保持合適的上升流速是必要的。
3、反應(yīng)池布水系統(tǒng)設(shè)計。水解酸化反應(yīng)器良好運行的重要條件之一是保障污泥與廢水之間的充分接觸,為了布水均勻與克服死區(qū),水解酸化池底部按多槽布水區(qū)設(shè)計,并且反應(yīng)器底部進水布水 系統(tǒng)應(yīng)該盡可能地布水均勻。
水解酸化池的布水系統(tǒng)形式有多種,布水系統(tǒng)兼有配水和水力攪拌的功能,為了保證這兩個功能的實現(xiàn),需要滿足以下原則。
(1)、確保各單位面積的進水量基本相同,以防止發(fā)生短路現(xiàn)象;
(2)、盡可能滿足水力攪拌需要,保證進水有機物與污泥迅速混合;
(3)、易觀察到進水管的堵塞,并當堵塞發(fā)生后很容易被清除。
設(shè)計參數(shù):對于設(shè)計來說較難掌控的是水解酸化池的停留時間,因為廢水的種類不同,所含的有機物水解速度不同,所以停留時間自然不會相同。這就需要對所做的工程總結(jié)經(jīng)驗數(shù)據(jù),或者通過做實驗確定。對于水解酸化工藝本人并沒有什么實際經(jīng)驗,從理論來看,覺得可以放大停留時間,保證水解時間,讓其適當過渡到厭氧后兩個階段。
本文的設(shè)計計算部分摘錄了《水解(酸化)反應(yīng)器在工程應(yīng)用中的研究與展望》—中山市環(huán)境科學(xué)研究所論文的內(nèi)容,另外該論文里有介紹了水解(酸化)反應(yīng)器的類型及其在工程應(yīng)用中的效果,其常規(guī)設(shè)計的兩個參數(shù)如下:
1、停留時間:一般為2.5-4.5h,考慮綜合情況,但根據(jù)污水的有機成份分析在實際應(yīng)用中可適當延長。
2、池內(nèi)上升流速:一般控制在0.8-1.8 m/h 較合適。
水解酸化主要用于有機物濃度較高、SS較高的污水處理工藝,是一個比較重要的工藝。如果后級接入UASB工藝,可以大大提高UASB的容積負荷,提高去除效率。水中有機物為復(fù)雜結(jié)構(gòu)時,水解酸化菌利用H2O電離的H+和-OH將有機物分子中的C-C打開,一端加入H+,一端加入-OH,可以將長鏈水解為短鏈、支鏈成直鏈、環(huán)狀結(jié)構(gòu)成直鏈或支鏈,提高污水的可生化性。水中SS高時,水解菌通過胞外粘膜將其捕捉,用外酶水解成分子斷片再進入胞內(nèi)代謝,不完全的代謝可以使SS成為溶解性有機物,出水就變的清澈了。這其間水解菌是利用了水解斷鍵的有機物中共價鍵能量完成了生命的活動形式。但是COD在表象上是不一定有變化的,這要根據(jù)你在設(shè)計時選擇的參數(shù)和污水中有機物的性質(zhì)共同確定的,長期的運行控制可以讓菌種產(chǎn)生誘導(dǎo)酶定向處理有機物,這也就是調(diào)試階段工藝控制好以后,處理效果會逐步提高的原因之一。水解工藝并不是簡單的,設(shè)計時要考慮污水中有機物的性質(zhì),確定水解的工藝設(shè)計,水解停留時間、攪拌方式、循環(huán)方式、污泥回流方式、設(shè)計負荷、出水酸化度、污泥消解能力、后級配套工藝(UASB或接觸氧化)。
有人提到水解后COD不降反升,可能有以下原因:一是復(fù)雜有機物在COD檢測中不能顯示出來,但是水解后就可能顯示COD;另一種可能是調(diào)試時,運行參數(shù)控制不準確,造成水解菌膠團上升隨出水流失;再一可能是沒有考慮有機物的生物毒性濃度和系統(tǒng)的生物忍耐性,造成菌種中毒流失,流失的菌膠團在出水檢測中顯示COD增高,這就要求調(diào)試時加強生物相的觀察和記錄對比。
穩(wěn)定性:水解酸化池抗沖擊負荷能力強,在進水COD為1000mg/l時,仍能保證出水在200mg/l,能起到非常好的緩沖作用;水解酸化池水力停留時間短,土建費用較低,而且運行費用低,無任何電耗,污泥水解率高,減少脫水機運行時間,降低能耗,因此水解酸化池的穩(wěn)定性和經(jīng)濟性要遠遠超過其他預(yù)處理工藝。
污泥沉積:運行一段時間后發(fā)現(xiàn)曝氣池前段水解酸化池發(fā)生污泥沉積在池內(nèi),最嚴重時甚至整個池內(nèi)全是污泥,并有部分死泥上浮。經(jīng)分析發(fā)現(xiàn)主要原因是水解酸化池潛水攪拌機功率太小,再加上污泥回流量過大,池內(nèi)介質(zhì)密度太大,潛水攪拌機無法使整池泥水混合物翻滾起來,導(dǎo)致發(fā)生污泥沉積現(xiàn)象。
通過降低水解酸化池污泥回流量至10%以下,能基本解決污泥沉積問題,但系統(tǒng)除磷效率和水解酸化功能明顯降低,最好的解決辦法是把潛水攪拌器更換為大功率潛水攪拌
機理分析:一般認為,污水進入水解酸化池后進行充分的氨化作用,水解池出水氨氮比進水有所增加。而根據(jù)某水務(wù)某污水處理廠實際運行情況,水解酸化池水力停留時間在4.4h,污泥齡在6d左右,水解酸化池氨氮平均去除率達到42.34%,凱氏氮去除率為40.1%,總氮去除率為37.92%;具體分析原因:去除氨氮一般以同化作用、硝化反硝化作用實現(xiàn),同化作用去除一般較少,通過計算去除率僅在10%左右,而一般硝化反硝化的條件也不具備,如溶解氧、水力停留時間等因素;因此必然存在另一種形式的去除氨氮的反應(yīng)存在,初步分析可能存在厭氧氨氧化的現(xiàn)象,但需進一步的分析與研究。
操作規(guī)程:一般厭氧發(fā)酵過程可分為四個階段,即水解階段、酸化階段、酸衰退階段和甲烷化階段。而在水解酸化池中把反應(yīng)過程控制在水解與酸化兩個階段。在水解階段,組合填料可使固體有機物質(zhì)降解為溶解性物質(zhì),大分子有機物質(zhì)降解為小分子物質(zhì)。在產(chǎn)酸階段,碳水化合物等有機物降解為有機酸,主要是乙酸、丁酸和丙酸等。水解和酸化反應(yīng)進行得相對較快,一般難于將它們分開,此階段的主要微生物是水解—酸化細菌。
廢水經(jīng)過水解酸化池后可以提高其可生化性,降低污水的pH值,減少污泥產(chǎn)量,為后續(xù)好氧生物處理創(chuàng)造了有利條件。組合填料在設(shè)置水解酸化池可以提高整個系統(tǒng)對有機物和懸浮物的去除效果,減輕好氧系統(tǒng)的有機負荷,使整個系統(tǒng)的能耗相比于單獨使用好氧系統(tǒng)大為降低。
水解酸化池的處理效果增強措施:
a、水解酸化池底部安裝有大阻力布水系統(tǒng),利用二沉池的回流污泥攪動水解酸化池底部的污泥,使其處于懸浮狀態(tài)并且與進入的廢水充分混合,從而提高了水解酸化池的處理效果,減輕后續(xù)好氧處理的負荷。二沉池的污泥回流水解酸化池,可以增加水解酸化池內(nèi)的污泥濃度、提高處理效果,同時使污泥得到消化,減少了剩余污泥的排放量、降低污泥處理費用,從而減少了運行費用。
b、在水解酸化池內(nèi)安裝彈性填料,對攪動的廢水進行水力切割,使懸浮狀態(tài)的污泥與水充分混合。為水解酸化菌的生長提供有利條件。
c、水解酸化池底部還裝有排泥管道系統(tǒng),是由UASB厭氧反應(yīng)器排泥系統(tǒng)改進而成,可以保證水解酸化池長期穩(wěn)定的運行。
為保證設(shè)施的穩(wěn)定運行,必須保證均勻進水!根據(jù)車間的日產(chǎn)生污水量,分次分階段的從調(diào)節(jié)池提升至水解酸化池;污泥回流量控制在總污泥量為池容的1/3即可。
我山東帕克環(huán)保工程有限公司是專業(yè)從事污水處理、廢水處理、中水回用、凈水處理、RO返滲透系統(tǒng)和安裝服務(wù)的綜合型環(huán)保公司,對各關(guān)鍵工藝的研發(fā)改良,使技術(shù)更加成熟穩(wěn)定,廣泛應(yīng)用在各行業(yè)的水處理工程中,提供專業(yè)的設(shè)計方案和整體施工承包,竭誠為您服務(wù)!